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1 Multimodal Sensing Architecture

The NIW multi-touch floor surface uses multiple input modalities to infer a representation of the user’s state.
An array of 36 tiles, each equipped with four force sensors in their corners (144 sensors in total), measures the
forces acting at any given time on the surface. Simultaneously, one or more motion tracking systems can be
available to track the user’s feet or other points of interest using infrared reflective markers. For modularity
and independence of programming language, this data is processed in a tiered fashion with a strong reliance on
Open Sound Control (OSC) for data transfer.

The design of our current architecture is illustrated in Figure 1.1.

Figure 1.1: System architecture

At the lowest level, the output of the force sensors is relayed by an FPGA module using OSC protocol to the
haptic feedback rendering cluster, a set of Mac Mini computers. This cluster hosts an OSC-based data server
that performs filtering and basic feature extraction on the raw force information for downstream clients. In
addition to configurable discreet filters, the server can determine user-floor contact points and label them with
unique identifiers that are persistent in time. Normally, such data is either requested internally, via a loopback
call, to drive the real-time haptic rendering or it is passed over the network to the data aggregator at the next tier

The downstream data aggregator, which is outside the haptic rendering cluster, is responsible for sensor
fusion. It subscribes to the data stream of high level features extracted from the force sensor data in addition
to the data streams of any available motion capture systems. Using this data, it tries to build a more reliable
estimation of the user’s state, including 3D position, rotation and contact forces. With multiple data sources, the
aggregator can attempt to compensate for possible occlusion of the motion capture hardware and can perform
sanity checking of the output data, in effect, carrying out a certain degree of sensor fusion processing. This
capability is currently under development.

The data is then available, either at the software level via a Java API, or to clients subscribing over the
network using OSC. In most cases, data would be used directly to control visual feedback on the floor and to
drive the principle parameters of the haptic feedback.
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In addition to analysis and sensor fusion tasks, the aggregator system acts as a centralized input mechanism
for all graphical floor based applications. This standardizes input response behavior across all applications and
allows all applications to benefit retroactively from improvements to the data analysis and fusion logic.
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2 Gesture Spotting for Body Movements

Foot-based interaction has received growing interest as a new modality for performing spatial navigation and
exploration tasks. Additionally, the availability of new, low cost, commercial sensing systems have spurred
increased, if somewhat limited, prototyping activities. However, most research has been limited by two factors:
the lack a large enough sensing surface to allow significant user movement and the absence of floor projection
to provide context for actions and gestures. This motivates our investigation and comparison of various gesture-
spotting possibilities for foot-based spatial navigation. For our initial experimentation, we begin with navigation
of geosptial data sets, given the significant body of work that has already been conducted in this area with multi-
touch displays, in particular using mobile devices. However, it has been suggested that tasks of a non-accurate
and secondary nature, like as those involved in such navigation, may be well adapted to foot-based interaction
methods [8].

Our design consists of a CAVE-like environment, in which a map is projected onto a multi-touch pressure
sensitive floor surface. The pan and zoom are controlled through foot and body gestures. Simultaneously,
corresponding street view images are projected on the front and side walls. The various interaction paradigms
being explored are described as follows:

2.1 Overview of Paradigms

2.1.1 Classic Interface

This interface applies the traditional map interface: four arrow buttons for panning and a slider for zoom, to
virtual controls on the floor.

Figure 2.1: Four button arrows (left) corresponding to panning in the cardinal directions and a slider (right) for
zoom.

2.1.2 Bezel Interface

The users establishes a pivot point by standing still for a short period. Placing one foot outside of the pivot area,
indicated by a circle around the feet, pans in the direction specified as the vector from the pivot center to the
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outside foot. The participant can, at any time, exit the pivot area and establish a new one elsewhere.

Figure 2.2: The first foot to remain still establishes the pivot point, surrounded by a blue circle. The second foot
then specifies the vector, relative to the pivot, for panning.

2.1.3 Sliding Interface

As with the bezel interface, the users first establishes a pivot point by standing still for a short period. Then, by
placing one foot outside the pivot area and using sliding or dragging gestures, akin to touch-screen scroll on an
iPhone, the user can pan the map.

Figure 2.3: Here, the first foot establishes the pivot point, and the second foot slides or drags the display in a
scrolling motion, with inertia.

2.1.4 Magic Tape Interface

Inspired by earlier work [2], this metaphor allows users to navigate freely in the center of the floor space,
without altering the displayed map contents. However, when participants walk past the boundary region of the
floor surface, the map pans in the direction designated by the user’s position. The farther the user from the
center, the greater the panning speed.
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Figure 2.4: The rectangular outline indicates the magic tape boundary, beyond which, the user’s footstep will
result in panning in the direction formed by a vector from the center crosshair and the user’s foot.

2.1.5 Crouch and Jump Zooming

In all interfaces except the classic interface, short body gestures can be used to control zooming. A curt “crouch-
ing” gesture zooms the map in, while a curt “jumping” gesture (raised onto the toes) zooms out.

Since such gestures have distinctive normal-force profiles trough time they can be matched to a reference
signal. The use of a dynamic time warping algorithm for the matching in conjunction with preprocessing
normalization allows for variations in gesture speed and amplitude from the user.

Figure 2.5: Crouching and jumping gestures for zoom control.

2.2 Gesture Recognition

The task of gesture recognition on a multi-touch foot interface can be broadly broken into two areas: the
detection of spatial gestures and the detection of weight gestures.
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2.2.1 Spatial Gestures

The simpler task, that of spatial gestures detection can be separated in the analysis of absolute gestures and
relative gestures. In this context, any object contacting with the floor, such as a foot, is simply considered a
punctual source of force at the barycenter of the object. Each punctual source can then be treated as a single
cursor, or contact point, in the context of a multi-touch interface.

Absolute gestures are then fairly trivially recognized; the presence of a contact point at a particular spatial
location can trigger an action or event sequence. Similarly a number of more complex graphical objects can
function in an absolute spatial context. Knobs, sliders or switches can be controlled easily using absolute input.

For relative gestures, a similar basic approach is taken. As before, force input is treated as punctual and
originating from the barycenter of an interacting object, i.e., a contact point. However, it must be possible to
create a standard relative reference frame from which the contact points can be interpreted. This is accomplished
by leveraging the physical constraints of standing, which, ignoring the possibility of jumping, require at least
one foot to be in contact with the ground at all time. When the user first lifts a foot, we assume that this initiates
a gesture sequence. The foot that remains in contact with the floor will then be constrained to its current position
until the end of the gesture sequence. The contact point representing this foot provides a natural reference point,
or pivot, for relative user gestures. If the user was instead walking or stepping rather than initiating a gesture,
the pivot would be released almost immediately, thereby breaking the relative reference frame and any possible
subsequent gesture sequence. Robust detection of the pivot rests on the simple assumption that there will always
be a window, before the start of a gesture, when the pivot is the only user contact with the floor. This occurs
when the gestural foot is raised in anticipation of the upcoming interaction. Once a pivot is established, the
second, gestural foot can easily be used for various types of relative interaction. Objects positioned relative
to the user, not the space, can be pressed and controlled as they follow the user in the space. Alternatively,
the spacing of the pivot and the gestural contact point can denote a vector, for example, to indicate desired
movement direction. Or, a relative dragging movement of the gestural foot can serve for analog input, such as
zooming or volume, or indicate desired movement, such as the dragging and release gesture used to navigate
virtual maps.

2.2.2 Weight Gestures

On the other hand, the analysis of weight and posture-centric gestures is significantly different. The idea is to
recognize distinct sequences of whole body movements based on weight shifts and posture changes as unique
gestures. Many such movements are characterized by distinctive transient force signal from the floor sensors,
due to the reaction forces the user generates to move about. The gestural vocabulary in question is one of
crouching, jumping, leaning and tapping. Such movements are accompanied by force impulses as the user lifts
and moves his or her body weight. However, there are two obstacles to detection of these gestures. First, they
can significantly vary in amplitude due both to the manner of execution and the strength and intensity displayed
by the user. This issue is easily resolved through an initial normalization of the data, which also reduces the
sensitivity of the system to noise. Secondly and more significantly, the timing of sub-steps comprising such
movements may vary greatly between users, resulting in a signal that is distorted in time. For instance, one
user’s “curt jump” might consist of a quick rise to the toes followed immediately by a drop back down, while
another user may pause briefly at the peak the rise, stand on tiptoe, and then slowly drop down. While both
inputs will share a common distinctive shape, they are stretched and distorted in time relative to each other.

In order to compensate for this, a dynamic time warping algorithm (DTW) is used to match reference gestures
to the input waveform. The system performs a continuous windowed DTW analysis of the force input from
the sensor with respect to a number of reference force waveforms, generated beforehand from a training data
set. Given an input function i(t) and a reference waveform r(t), the DTW algorithm builds a 2D graph such
that every point p(x,y) = |i(x)− r(y)|. A perfectly diagonal path through the graph would travel at constant
and equal time through both samples. However, curved paths can travel at variable speed through the samples,
allowing for warping in the signal matching process. The sum of all the values along any monotonic and
continuous path (moving forward in time only) represents the matching cost of the given path, with lower costs
representing better matches.
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We understand that the “start” of any gesture can be difficult to determine prior to analysis. This suggests that
we should relax the typical DTW constraint of computation proceeding through each sample in its entirely, i.e.,
the matching path extending from p(0,0) to p(xmax,ymax), Instead, the matching algorithm might be allowed
to enter anywhere along the bottom edge (p(xa,0)) and exist anywhere along the top (p(xb,ymax),xb > xa) to
deal with the case where the input gesture was performed much faster than the reference. In this case, the
algorithm remains constrained to traverse the entire reference sample, but is free to match only the subsection
of the analysis window containing the input gesture. Once the path of least cost through the graph is computed,
the similarity of the reference and input waveform can be evaluated with allowances for time warping. This
allows users flexibility to vary the speed of different segments of the gesture, as long as the overall transient
characteristics are still present.

While the implemented DTW algorithm is currently used only to detect curt rise/jump and drop/crouch
gestures, it could easily be adapted to match more complex gestures, assuming sensors behave with sufficient
linearity and the system is sufficiently trained. A gestural vocabulary might, for instance, include rocking
gestures, rhythmic gestures such as distinctive tapping, or specialized gestures such as rolling onto the sides of
the feet.
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3 Probabilistic Tracking of Pedestrian
Movements via In-Floor Force Sensing

3.1 Tracking Problem and Algorithm

Consider a dynamic system with states xt and observations zt , both indexed by time. A Bayesian filter prob-
abilistically estimate at time t the state xt by sequentially updating a belief distribution Bel(xt) over the state
space, defined by Bel(xt) = p(xt |zt ,zt−1,zt−2, ...) = p(xt |z1:t). Assuming the states comprise a Markov process,
the Belief distribution at each subsequent time step can be obtained, using Bayes’ Theorem, in terms of the
belief state at the prior time step t−1, the assumed motion model p(xt |xt−1), and the likelihood p(zt |xt) of the
newly acquired observation zt given the state xt :

Bel(xt) ∝ p(zt |xt)
∫

p(xt |xt−1)Bel(xt−1)dxt−1 (3.1)

Bayesian filters can be distinguished, in part, by the form of the Belief distribution Bel(xt) that is assumed.
Here, we adopt a Monte-Carlo approach, in which Bel(xt) is represented by a set of weighted samples, or
particles, given by St = {(xi

t ,w
i
t), i = 1,2, . . .Ns}. Our method uses the Sampling-Importance-Resampling (SIR)

algorithm [5], described in Alg. 1, and schematically illustrated in Fig 3.1.
For each new observation, SIR re-weighs the set of particles depending on their likelihood, evolves them in

time using the assumed dynamic model, and updates the particle set St by resampling based on these weights.
Specifically, the likelihood function L(xt) = p(zt |xt) is computed in two steps as follows.

1. Using the observation model H, defined in Section 3.1.1, that maps states into the observation space,
generate expected observations z∗t = H(xt).

2. Using the similarity measure S(z,z′) = p(z|z′), defined in Section 3.1.2, compute the likelihood as L(xt)≡
S(z∗t ,zt).

As seen in Eq.3.2, each particle is weighted according to its likelihood while also considering a prior distribution
p(xt). As described in Section 3.1.2, the prior distribution p(xt) is useful for encoding constraints on states xt ,
thus leading to an efficient search of the state space.

The attributed weight is then used to resample the particle set (see Eq. 3.3). This step distinguishes SIR
from SIS (Sampling Importance Sampling), and is meant to eliminate degeneracy of particles; by concentrating
on high weighted particles to create a new uniformly distributed particle set, the extreme case where most
particles have negligible weight is avoided. The opposite extreme, consisting of a single strong hypothesis, can
be avoided by the inclusion of a roughening process. Roughening consists of the addition of random, zero-
mean, normally distributed noise to all particles after resampling (Eq. 3.5), to allow for a thorough search of
the solution space. Additionally, particles are propagated forward in time based on the assumed dynamic model
(see Eq.3.4), which implicitly defines the motion probability p(xt |xt−1). Our dynamic model consists of two
processes, accounting for the continuous and discrete aspects of the motion of interest. The dynamic model and
roughening process are defined in detail in Section 3.1.3.

In our system for tracking via in-floor force measurements, the relevant variables consist of:

• Observations zt , consisting of a 12×12 array of force values, fi.

• States, xt , describing kinematic lower-body poses, are 19-dimensional vectors: xt = (φl,t , φ̇l,t , φ̇l,t−1,
φr,t , φ̇r,t , φ̇r,t−1, β ). They include planar midpoint coordinates u and orientations θ for each foot, where

9



{xi
t,w

i
t = N−1

p }Ns
-1

{xi
t,w

i
t = p(zt|xi

t)}

{xk
t ,w

k
t = N−1

p }Ns
-1

{xk
t+1,w

k
t+1 = N−1

p }Ns
-1

t +1

p(zt|xt)

xt

Figure 3.1: The SIR particle filter algorithm.

Algorithm 1 Sampling Importance Resampling

Initialize particles randomly: S0 ∼ N(µS,σS)
while t > 0 do

Observe zt .
for i = 1 to Ns do

Likelihood: p(zt |xi
t) = S(zt ,H(xt))

Weight: wi
t = p(xi

t)× p(zt |xi
t) (3.2)

end for
for i = 1 to Ns do

Normalize: W = ∑i wi
t ,w

i
t ←W−1wi

t

Resample: xi
t ∼ p(xi∗

t |wi
t),w

i
t+1 = N−1

s (3.3)

Draw: xi
t+1 ∼ p(xt+1|xi

t) (3.4)

Roughen: xi
t+1← xi

t+1 +ηt+1,η ∼ N(0,σx) (3.5)

end for
St+1 = {(xi

t+1,w
i
t+1)}Ns

i=1
end while

φl = (ul,θl) and likewise for φr, along with first time derivatives. The state xt also includes a binary-
valued vector β = (βl,βr), implemented as a quaternary variable, which indicates the foot-floor contact
condition (βi = 1 if there is contact) for the left and right feet.

Figure 3.2 illustrates this state description within a skeletal model. The algorithm definition is completed by
specifying the observation model zt = H(xt), the likelihood model p(zt |xt), and the motion model, p(xt |xt−1).

3.1.1 Observation model

We model expected observations H(xt) for a state xt by simulating the mechanical forces associated with a
pose. Ignoring shear forces, foot-tile contact results in a normal pressure distribution p(u), where u = (u,v)
are 2D coordinates on the floor. The pressure distribution on a tile is conveniently summarized by a contact
centroid pc = (uc,F), where F =

∫
du p(u) is the net normal force and uc is the pressure centroid. A normal

force with magnitude F , applied at uc, would give rise to the same force measurements fi as p(u) [12, 1] (Fig
3.3). Our observation model associates a pose xt to a set of contact centroids, pc, j, j = 1,2, . . . ,Nc. One centroid
is placed on each tile that a foot pose is determined to be in contact with (βi > 0), and the total weight F of
the user is partitioned among these centroids. The placement of a contact centroid is determined by the average
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Figure 3.2: State description of lower body poses: xt defines feet and foot-floor contact.

position of foot to tile contact. Expected sensor readings fi are obtained from the static equilibrium equations
for each tile. Each pressure centroid pc yields a contribution fi,c = d−1

i (∑4
j=0 d−1

j )−1, where d j = |uc−u j|, and
u j is the sensor location. In this way, we predict observed force values z∗t = { fi,t} for a state xt .

Figure 3.3: The observation model H(xt) maps a pose xt (illustrated here as two feet) to a set of contact centroids
(uc). These are then converted to force sensor readings zt = { fi}. Expected force observations are
illustrated as grids, with each quadrant intensity proportional to corresponding force sensor value
(given in Newtons).

3.1.2 Likelihood model

The likelihood function L(xt) = p(zt |xt) describes the probability of observing force values zt given the state
xt . As described above, we use the observation model to generate expected observations, z∗t = H(xt). The
likelihood function is then defined in terms of a normalized similarity measure p(zt |xt) = S(z∗t ,zt) between true
force pattern observations zt and expected force observations z∗t .

Similarity measure S The similarity measure S(z,z′) = p(z|z′) models the probability of observing z if the
true observation is z′. Conventional similarity measures make use of metrics such as Euclidean or Mahalanobis
distance functions. However, since H is a high-dimensional discontinuous map from states xt to observations
zt , these measures cannot properly gauge similarity between observation vectors zt , z∗t = H(xt). Moreover,
the force observations are comparatively sparse, with most values being zero. As an alternative, we compute
pair-wise similarity between such patterns, based on a measure of their area of overlap. Specifically, we employ
a similarity measure that has proved useful in tracking via binary image masks [9], computing S(z∗,z) as the
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Figure 3.4: 2D pressure distributions for (a) zt , (b) z∗t , (c) zt ∩ z∗t , (d) zt ∪ z∗t . Pressure distributions are illus-
trated as grids, with each quadrant intensity proportional to corresponding force sensor value. The
intersection (∩) and union (∪) of force observations are used in computing similarity S(zt ,z∗t ).

relative area of overlap between the true and expected 2D pressure distributions,

S(z∗t ,zt) =
∩(z∗t ,zt)
∪(z∗t ,zt)

=
1
Nz

Nz

∑
i=1

min(zt(i),z∗t (i))
max(zt(i),z∗t (i))

Fig. 3.4 illustrates conceptual examples of observations zt , z∗t as 2D pressure distributions, as well as their
intersection ∩(z∗t ,zt) and union ∪(z∗t ,zt).

We note that the average overlap of these resulting pressure distributions is an effective metric for capturing
similarities between force observations as a probability:

S(z,z) = 1

z1 6= z2 ⇒ 0 < S(z1,z2) < 1

S(z1,z2) = S(z2,z1) (3.6)

Postural constraints The likelihood model is modified to encode human postural constraints, via a prior
distribution p(xt). The latter is defined to consist of a set of independent postural priors for human walk-
ing, in the form of univariate Gaussian distributions N(µς ,σς ), N(µΘ,σΘ) over stance width ς = ‖ul − ur‖
and relative orientation Θ = |θl − θr| respectively. The postural prior is introduced as the product p(xt) =
N(ς ; µς ,σς )N(Θ; µΘ,σΘ). The prior distribution p(xt) is applied when computing the particle weights from
the likelihood L (see Eq. 3.2).

3.1.3 Dynamics Model

We model the movements of the lower body of a walker via the motion probability p(xt |xt−1). The state xt

consists of continuous configuration variables φi and discrete contact variables βi. We therefore approximate
foot motion in a hybrid (stochastic) framework, incorporating continuous, linear movements of the limb coupled
to discrete state transitions reflecting changes of the foot-floor contact conditions.

Continuous, linear dynamics The state representing the left or right foot is denoted respectively by a
vector φi = (ui,θi) giving the midpoint and orientation of either the left (i = l) or right (i = r) foot at time t
(Fig. 3.2. The dynamics used in our algorithm can be described by the following linear, discrete time system:

φi,t = φi,t−1 +βiΓi(φ̇t−1dt +η
0
t ) (3.7)

φ̇i,t = βi[αφ̇i,t−1 +(1−α)(φ̇i,t−2 +η
1
t−1)] (3.8)
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The parameter βi is the binary contact variable for foot i. Thus, φi is constant when there is contact (βi = 0)
and otherwise drifts, with position and velocity driven by additive Gaussian noise processes η0

t or η1
t , where

η ∼ N(0,Σ). For efficiency, we parametrize drift via a single noise process, defining η ≡ η0
t = η1

t dt for all t.
The noise covariance Σ is a 3×3 diagonal matrix with diagonal entries σu,σv,σθ . To mimic walking, velocity
drift in the direction that the foot is oriented is assumed to be larger. This non-isotropic drift is implemented
through the factor Γi, a diagonal matrix with entries (cosθi(γ +

√
1− γ2),sinθi(γ −

√
1− γ2),1), where 0 <

γ < 1 is a dimensionless scalar defining the longitudinal bias. α is a dimensionless scalar defining the velocity
noise mixing rate. It approximates the dynamics of a free foot during walking by means of a saturating linear
drift velocity.

Although this continuous dynamic model violates the Markov assumption made in Eq.3.1, we note that there
exists a Markov representation of this system, via the following change of variables:

Φt =
[

φ̇t

φ̇t−1

]
=
[

α 1−α

1 0

]
Φt−1 (3.9)

(0,0)

(1,1)

(1,0)(0,1)

Figure 3.5: Stochastic state transition diagram approximating stepping motion.

Roughening As presented in (Alg. 1), noise η ∼ N(0,σx) is added to the continuous state components φi at
each SIR step in order to avoid particle degeneracy.

Discrete state transition model The dynamic model includes discrete transitions from the foot-floor
contact states β = (βl,βr), where β = 0 or 1, via the stochastic process, shown in Figure 3.5. Despite its
simplicity, this model is effective in approximating discrete stepping motion. δ is an empirically determined
probability of no change in contact state β . All remaining transitions are symmetric, with transition probability
1−δ

2 .

3.2 Experiment and Results

The system described above was evaluated by measuring the absolute positions of the feet of pedestrians using
data acquired synchronously via motion capture (Vicon Motion Systems). Reflective markers were attached to
the walkers’ shoes, providing an accurate estimate of 3D foot positions. Five recordings of walking sequences
between 5.7 and 12.4 seconds in length were acquired via the apparatus described in previous reports. Syn-
chronous motion capture and force data were recorded. Errors were computed based on maximum a posteriori
(MAP) foot position estimates obtained from the tracking algorithm.

Figure 3.6 shows the state estimates and force observations at four stages of the walking sequence: the initial
particle set has high variance, but is quickly narrowed down to a few hypotheses which are evolved based on
our motion model. Figure 3.7 shows the resulting motion trajectories and errors for the two foot locations,
in planar coordinates. Average RMS error values are reported in Table 3.1. The experimental parameters are
given in Table 3.2. Position errors during foot-floor contact are found to be slightly less on average than when
a foot is not in contact with the floor. Temporal alignment mismatches were found to have a large effect,
so we also performed a windowed error calculation in which an acceptable time shift of 10 samples (at 20
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Figure 3.6: Force observations and pose estimates at 4 stages of the sample walking sequence. Observations
are shown as 2D pressure distributions, with quadrant intensity proportional to force sensor read-
ings. Poses are illustrated as green and red lines, corresponding to a top view of left and right feet
estimates respectively, with blue circles corresponding to inferred center of mass.

Foot Error (m) Windowed error (m)
Right (no contact) 0.1901 0.1245
Left (no contact) 0.1649 0.0336

Average (no contact) 0.1775 0.0791
Right (contact) 0.2025 0.1058
Left (contact) 0.1406 0.0306

Average (contact) 0.1716 0.0682
Right (all) 0.1982 0.1122
Left (all) 0.1490 0.0316

Average (all) 0.1736 0.0719

Table 3.1: RMS Position Error

Hz) was permitted. This greatly reduced RMS position errors (see Table 3.1), suggesting that system tracking
performance may be most acceptable in situations in which temporal accuracy is not important. Tracking
performance in more temporally demanding settings might be greatly improved if a better alignment can be
achieved. Video documentation of these results is provided in the supplementary material, and available online
at http://www.cim.mcgill.ca/˜rishi/video.swf.

In addition to position estimates, this system provides continuous labels identifying the walker’s right and left
feet. During tracking of the sequences used for evaluation, left and right feet were continuously and coherently
identified with 100% accuracy. The capability of this system to maintain and propagate these labels may be
useful for applications including floor-based touch screen user interfaces, where it may be desirable to assign
each foot a different functional operation, or to render a different response to left and right foot [12].

3.3 Conclusion

This work presented Bayesian filtering techniques to track the lower body pose of a pedestrian from foot-
floor interaction forces acquired via a coarse array of in-floor force sensors. The system achieves continuous
and labeled tracking of the lower limbs of a walker via a coarse sensor array, by combining prior knowledge
about the mechanical structure of the interface and a simple, but consistent, model of the dynamics of the feet
during walking. In the experiment described above, our system never confused the left and right feet of the
walker, and was able to track the locations of each with an average resolution on the order of 15 cm, and with
improved resolution when feet are in contact with the surface. Potential applications of these techniques include
tracking in smart environments in which motion capture is impractical (due to occlusion or other factors), and
to interaction with distributed, floor-based touch surface interfaces for the feet [12, 10].

Despite the promising nature of the results presented above, further experiments are needed to evaluate the
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Figure 3.7: Sample results for a pedestrian crossing the apparatus, comparing measurements from motion cap-
ture data and estimates obtained from the particle filter. Results are shown for both feet φl,φr.
The shaded domains illustrate contact states, with grey and white corresponding to βi = 1, βi = 0
respectively.

quality of the tracking. In addition, it is clear that the system itself can be improved in several respects. A
higher-density sensor network would improve position estimates during contact, albeit at greater cost. A model
for the non-contact portion of walking movement that is more sophisticated than the random drift model used
in our system could significantly improve estimates in foot tracking when a foot is not in contact with the floor.
The incorporation of additional prior knowledge about the kinematic constraints on lower limb positions during
walking would also be expected to contribute improvements. In ongoing work, we are exploring the possibilities
for optimally fusing information from in-floor force sensors with motion capture or other video sensors, in order
to resolve data loss due to camera occlusion, or to provide contact forces and timing information that cannot be
accurately estimated from video.

SIR Algorithm
Number of particles Ns = 200
Initial Noise σS = 4.572 cm
Roughening Position Noise σx = 0.003048 cm/rad

Likelihood Model
Postural prior stance size (µς ,σς ) = (30.48,30.48) cm
Postural prior stance angle (µΘ,σΘ) = (0,π/2) rad

Dynamic Model
Additive Position Noise σu,v = 0.3048 cm
Additive Angle Noise σθ = 0.003048 rad
Longitudinal bias γ = 0.9
Velocity mixing rate α = 0.55
Probability of no β change δ = 0.55

Table 3.2: Experimental parameters
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4 Modeling of the User and the Haptic Device

Transparency in haptics is defined by the capacity to cover the range of our perceptual capacity, by producing
high wrenches and vibration amplitudes (tactons and icons) [7] in a wide frequency bandwidth and with high
fidelity. For a vibrotactile display, the coupling effects of user impendance with the dynamics of the device can
impede its transparency. In the case of a floor display, the impact of the foot on the device can confuse the
identification of ground material and therefore should be reduced.

A previous study shown that the structural properties of the tile could be compensated for obtaining a flat re-
sponse in the desired frequency bandwidth [11]. A 14-order FIR filter was disigned for this static compensation.
By inverting this filter, and applying it to all subsequent outputs of the actuator, we now have a significantly
corrected frequency response. The main issue is then to find a stable inverse filter. To improve the results
obtained with this filter and avoid some known issues, it’s also possible to used uniform and warped low delay
filter-banks equalizer such that only the phase delay of a second order subfilter will be effectively measured
between the input and the output of the vibrotactile response. However, this static compensation is not enough
and this research is exploring the effect of a dynamic compensation. The dynamic compensation presented here
is an approximation and thus using an adaptive equalizer technic like with a filter bank or with DFT/IDFT could
be another solution like in speach enhancement application [6].

The first component of the compensation is thus a filter bank equalizer which adjust the flatness of the haptic
device in a static configuration. The filter bank adptively adjust the gain of each subband filter in function of the
static configuration of the tile. The second component of this frequency correction system lies in dynamically
correcting the frequency response of the moving user. The main hurdle here is to be able to simplify the
computations involved in order to minimize hardware costs while still maintaining a reasonable level of fidelity.
In particular, we could do away entirely with the realtime correction algorithm and instead provide a preset
equalizer for that specific user based on his or her precalculated parameters. Thus, by studying a variety
of individuals and building up a sizable database of mappings from parameters to corresponding correction
equalizers, the entire correction system could function via a simple lookup table, interpolating any parameter
sets in between those from known users similar to the previous work presented in [4].

One area of interest lies in accurately determining the position of the tile from accelerometer data. One
subproject therefore involves investigating the efficacy of different integration techniques for noisy signals,
and heuristically estimating the tile’s pose to within a certain degree of accuracy. Furthermore, force sensing
resistors could be used in refining the accuracy of the tile’s pose.
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5 Efficient Acquisition of Force Data in
Interactive Shoe Designs (UNIVR)

While developing an interaction design concept for the acquisition of force data capable of providing sufficient
accuracy along with low latency and low encumbrance and obtrusion, we soon realized that the above issues,
if taken altogether, had still been substantially left unanswered by existing mobile solutions which could be
potentially applied to our active shoe prototype, without explosion of the costs.

For this reason, we have devoted some project resources for investigating on that direction. By moving from
the prototype developed during the first year of the project (refer to Deliverable 3.1), a new four-channel sensing
system has been proposed for the capture of force data from the feet during walking tasks. The system now
solves general issues of latency of the response, accuracy of the data, and robustness of the transmission of
digital signals to the host computer. By adopting widely used force sensing (Interlink) and analog-to-digital
conversion and pre-processing (Arduino) components, the proposed system is also expected to raise interest
among a broader interaction design audience.

Two main problems needed to be dealt with during the development of the system. The former consists of the
electro-mechanical characterization of the force sensing resistors. The latter asked to access to some low-level
resources of the Arduino board. An extensive discussion on the realization of the system is provided in [3], also
present in the project website private area.

5.1 Characterization of the FSR

In our previous prototype, a reasonable balance between front and rear sensitivity had been achieved by placing
an Interlink Force Sensing Resistor (FSR from now on) model 400 under the heel and a 402 under the toe.
While realizing the new prototype found that the model 400 reaches mechanical saturation much faster than
the 402. This time we have characterized the nonlinear behavior of the overall system, caused by the electrical
coupling between the FSR and the analog-to-digital converter (ADC) in the Atmel microcontroller on-board
the Arduino. The measurement setup included a hand-made wooden press mounted onto a weighing scale.

Each FSR was connected to the Arduino analog input through a voltage divider circuit. Thanks to this overall
setup, several sets of curves have been obtained for each sensor mapping force into ADC values, for changing
values of the resistance R1 in the voltage divider. In practice, each curve represents the relationship between the
applied force and the ADC output (ranging from 0 to 1023) for a specific value of the voltage divider resistance.
Fig. 5.1 displays the corresponding plots, respectively for sensors model 400 (a) and 402 (b). Their inspection
shows that the system is more linear when using the model 402.

Figure 5.1: Force/ADC maps for changing values of the voltage divider resistance.
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5.2 Firmware

To guarantee continuous interaction, the cheap hardware onboard the Arduino must perform stable analog-to-
digital conversion together with low-latency transmission of the digital signal toward the host.

Both the polling sequence and the transmission routine of the previous prototype had been written using
functions (such as analogRead and Serial.print) and procedure calls provided by the Arduino SDK.
The use of this framework allows to write code very easily, thanks to the good level of abstraction provided by
the embedded C++ API. Unfortunately the compiled program is in general not efficient, especially if running
on applications requiring a constant low latency.

Our solution consists in a program that makes use of API calls and lower level AVR Libc instructions to-
gether. Furthermore, a custom transmission protocol has been implemented which transmits binary data instead
of ASCII values, resulting in 64 instead of 160 bit messages meanwhile carrying the same information. In
conclusion, a linear relationship between the transmission rate and sampling frequency could be figured out.
This relationship is summarized in Table 5.1.

TXrate [baud] 9600 19200 38400 57600 115200
Ts [ms] 2.1 1.04 0.52 0.36 0.17
Fs [Hz] 476 961 1923 2778 5882

Table 5.1: Relationship between sampling frequency (Fs) and transmission rate (TXrate) using the custom
firmware.

In our application, involving four channels, the sampling frequency per channel is Fs = 5882/4≈ 1470 Hz.
Considering that the FSR’s have a response time of about 2 ms, a latency that is certainly smaller than any
human response to psychophysical cue changes, the obtained sampling frequency is well above twice as much
the Nyquist limit of 1/0.002 = 500 Hz.

Fig. 5.2 shows some plots of force signals recorded using the proposed system. These plots provide evidence
of a substantial absence of noise and jitter in the data. If perhaps not accurate enough for applications where
extremely high resolution is mandatory, such data are certainly suitable for most interaction design applications.
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Figure 5.2: Force plots. Red = left heel, green = left toe, blue = right heel, magenta = right toe.
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6 Acoustically-Sensitive Pavements (UNIVR)

In this chapter, we discuss further developments of the sensitive pavement system introduced in Deliverable
3.1. The system performs an analysis of the mechanical waves generated by the interaction of walkers’ feet
with the pavement and provides information about the position of the steps.

One of the appealing aspects of this approach is that it exploits the natural, pervasive and costless sensing-
network embedded in any object due to its solid state and its elastic properties that allows the propagation of
mechanical waves. Furthermore, the system is portable and, in principle, it can be applied to any pavement and
any walker wearing sufficiently rigid ordinary shoes.

As widely discussed in Deliverable 3.1, modelization of wave propagation in-air and localization of sound
sources by means of wave capturing and analysis is a well established field based on microphone array signal
analysis techniques. On the other side, in-solid wave propagation is much more cumbersome due to the oc-
currence of complex phenomena and dispersive propagation. For this reason, we decided to adopt the Time
Reversal (TR) method illustrated in detail in Deliverable 3.1.

We provide the results of the measurements obtained through a new arrangement of the sensing accelerome-
ters and a validation of the system for step position detections outside the sampled monitored area. The latter
aspect is particularly important, when it is necessary to distinguish between a monitored area and an external
area (the rest of the world). In fact, in the most general case of an ordinary pavement, there is no possibility to
isolate an area from the rest of the pavement or even from a contiguous space (the next room), where people
could accidentally walk for whatever reason.

6.1 Methodology and application scenario

As already discussed in Deliverable 3.1, the complexity and non-linear behavior of in-solid wave propagation
can be effectively exploited. In fact, the continuously changing waveforms supply an univocal characterization
of an event at any other point of the medium, where the propagating wave is captured. This is the strategy
adopted in the Time Reversal (TR) method illustrated in Deliverable 3.1. The method is based on the principle
that the impulse response in a chaotic cavity is unique for a given source location. In other words, a wave
propagating in a chaotic cavity contains the memory of its source location. In our case, the matter is to decide
how many “footprints” on the pavement have to be considered in order to be able to evaluate with a sufficient
accuracy the position of a footstep, i.e. of the acoustic source. Operatively speaking, a cross-correlation test is
performed. As already argued in Deliverable 3.1 the TR method has many advantages crucial for our problem,
such as that it is material-independent, not influenced by the homogeneity of the medium. Also, it is scalable
according to the kind of excitation (type of shoes wore by the user) and pavement characteristics. In fact, in
optimal conditions, i.e. with impulse-like steps and low reflection effects within the medium, the method could
work with a single sensor. Furthermore it is portable, since the set of accelerometers can be applied to any
pavement, even in presence of steps and different levels.

As a simple but general test-bench application, a basic scenario has been chosen: a boundary has been
established subdividing the pavement into two areas, one of which is forbidden. The sensitive (monitored) area
is within the side where the user is allowed to walk. Only a small part of the pavement near the boundary is
monitored (in our case an area of 2.5 by 3 meters). When a user approaches the boundary, the system reacts by
means of warning signals with a higher level of urgency as the walker gets closer to the boundary.
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6.2 Pavement setup

After numerous testing of different configurations of accelerometer location and different sampling points, we
ended up with the setup depicted in Figure 6.1. In particular, the eight accelerometers are situated in proximity
of the most critical “alarm” level, just beyond the boundary. Also, they approximate an equidistant placement
of the sensors with respect to the center of the sensitive area. This is the configuration that till now provided the
best detection results, much better, for example, than the results obtained by means of the array configuration
illustrated in Deliverable 3.1. The sampling points allowed a tiling of the sensitive area of the kind represented
in Figure 6.2. The warning levels were subdivided into 3 increasing degrees, corresponding to lines 6-5, 4-
3 and 2-1, respectively. A number of different paths starting outside the sensitive area, approaching it and
crossing it up to the border line were tested. Figures 6.3 and 6.4 show a couple of examples of such free walk
towards and across the sensitive pavement. Considering the method, the response of the system to footsteps
outside the sensitive area was an incognita. Fortunately, the footsteps outside the sensitive area are associated
by the localization system to the nearest part of the sensitive area (and not, for example to some inner position),
meaning that there is a continuity in the deformation of the waves due to the dispersion. This is crucial as well
for any detection of footsteps occurring within a tile and not exactly on one of the corners of the tiles, where
the sampling of the “footprints” takes place.

Figure 6.1: Floor setup.

6.3 Experimental results

The adopted position resolution corresponds to the size of the tiles shown in Figure 6.2. For each tile, the median
and the mean over the cross-correlation values of the four “footprints” of the corners of the tile are calculated.
Furthermore, the median value over all of the eight accelerometers is considered. Also, the operations on the
tiles and on the accelerometers are commuted and, playing around with the non-linearity of the median operator,
we compute four different estimations of the step localization. An example of estimation, based on the median
over the eight accelerometers of the means over the four corners of each tile is depicted in Figure 6.5. The first
four steps are outside the monitored area. The last three are inside the area and show as the walker approach
the border line in the left corner of the sensitive area. In general, the localization of the line of the tile matrix
is accurate up to plus/minus one line, which means, for example, that a step in the last line (line 1) was always
attributed to the maximum warning level, associated to levels 1 and 2 (as already mentioned, the warning levels
were finally ranked into three increasing degrees corresponding to lines 6-5, 4-3 and 2-1, respectively).

Presently, we are working on a real-time version of the algorithms, in order to achieve a system that can be
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Figure 6.2: Floor tiling. The 8 accelerometers arrangement and the 32 sampling position of the“footprints”.

Figure 6.3: An example of free walk.
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Figure 6.4: A second example of free walk.

Figure 6.5: Detection results for a free walk approaching the sensitive area from the bottom-right corner - tile
(6,1) in Figure 6.2 - and crossing it diagonally towards the upper-left corner - tile (1,3)in Figure 6.2
- . Over ten repetitions of the path the last step near the border was always classified as line 1 or 2
and, thus, the highest degree of alarm
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tested and employed in real-life scenarios. Also, the real-time implementation is necessary in order to proceed
to massive testing and a more robust validation of the system. In particular, we are evaluating and optimizing
the computational charge of the algorithms, in order to implement the algorithm as a Pure Data external, so that
to exploit the facilities of that development environment for audio applications.
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